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A steady-state high frequency discharge excited in an enclosed 
voinme where there is no gas flow has a series of characteristic prop- 
erties. Firstly, there appear different mechanisms governing the 
formation of the discharge depending on the pressure of the working 

Fig. i 

gas. Thus at low pressures the predominant mechanism is the diffusion 

of particles to the walls of the flask as covered in [1]. At high pres- 

sures a mechanism connected with heat conduction comes into 
6peration [2]. Secondly, in such a discharge energy transfer from 
the external field to the plasma does not occur over the whole 
volume occupied by the discharge, as a result of which the discharge 
geometry is determined not only by the method of introducing energy 
into the discharge, but also by the nature of its distribution and the 
method by which it is extracted from the discharge. Depending on 
these factors either a ring discharge or a cylindrical discharge is 
formed. 

A high-frequencydischarge by virtue of the very conditions of its 
formation, is unstable. However, in theease  of a dense plasma the 
departure of the temperature components from their values for equi- 
librium temperature is as a rule not large. We shall consider a dense 
plasma in which the govemhig mechanism is the heat  conduction. 
We can be fairly accurate in assuming t_hat there  exists local 
thermodynamic equilibrium in such a plasma. Then all transport 
coefficients are functions of temperature and pressure, and our prob- 
lem reduces to solving the energy balance equation together with 
Maxwelrs equations. 

While the present paper was being prepared for the press there 
appeared an article [3] in which a similar system of equations was 
treated dealing with a high-frequency high-pressure induced discharge. 
In this paper instead of solving the appropriate boundary value prob- 
lena the authors solve the Cauchy problem numerically, arbitrarily 
specifying supplementary conditions on the axis of the discharge. In 
our opinion such a procedure has three serious drawbacks: first, there 
is no possibility of examining qualitatively the functional connections 
of the plasma parameters; secondly, the arbitrary choice of the 
supplementary conditions makes it hard to compare calculated and 
experimental  resuits; thirdly, it  is impossible to investigate an impor- 
tant series of questions connected with discharge contraction. 

The present article solves the boundary vaine problem by the 
method of successive approximations. The first approximation to the 
solution enables us to make a qualitative examination of phenomena 
taking place in an induced discharge. The appropriate results which 
are useful for practical application will be set out in another article. 
The second approximation to the solution is used for numerical  calcu-  
lations of the basic discharge parameters in argon and comparing them 
with experiment. A. P. Sobolev is responsible for the theoreticaI 
portion of this article. 

1. Statement of the problem and derivation of the fundamental  
system of equations. We shall consider a system composed of a 
cylindrical inductor having a gas filled container placed within it 
(Fig. 1), We shalt assume that i) the field exciting the discharge is 

fairly uniform along the axis of the discharge; 2) the plasma is as a 
whole stationary; 3) the pressure in the system is constant; 4) the 
wavelength of the electromagnetic field is much larger than the 
characteristic dimension of the plasma; 5) the radiated energy may 
be neglected in comparison with the heat  Insses of the plasma. 

Employing the methods of nonequihbrium thermodynamics and 
assuming the assumptions to be fulfilled, we now write out the sys- 
tem of equations for an induced high frequency discharge in the form 

OH 4~ 1 0 1 OH 
Or ~ - - c - - ~ E '  r Or r E = - - c  0"--7-' 

Ou t 0 OT 
P O/- = -7- O7- rE -~ -  q- GE 2. (1.1) 

Here H, E are the magnet ic  and electric field strengths, k is the 
coefficient of thermal conductivity, o is the coefficient of electrical 
conductivity, T is the temperature of the plasma, O is the plasma 
density, and U is the internal energy per unit volume of the plasma. 

Since the plasma is heated by a high frequency field all quantities 
are functions of two characteristic times; t0--the t ime for establishing 
a steady state and t t = 1/w, where oa is the frequency of the electro- 
magnet ic  field. When the last equation of (1.1) is averaged with 

respect t o  its rapidly varying argument r = tot the system of equations 
(1,1) for the steady state may  be written in the form 

OH ~ 4~ E 1 0 o~ OH 
Or r ' r 

2~  
1 0 OT ~ f' 
-r Or rk -g/-r q- ~ -  ~ E~ (~) dr  = 0. (1.2) 

0 

The boundary conditions for this system of equations are 

4~ 
H (Ro) = - S -  nJo, 

L OT 
~7-  r=R0 = - -  ~r iT (Ro) - -  T0l ; (1.3) 

i -1- 6 /Ro  
~x = c~ t q- a (Ro + 6) <~.>-1 In (t q- 6 / Roy (1.4) 

Here nl is the number of inductor ampere turns per unit length, T O is 
the temperature of the snrrounding medium, a is the heat  transfer 
coefficient, <k> is the mean  thermal  conductivity coefficient of the 
wall in the range of temperatures from T(R0) m T(R0 + 6). 

If the current in the inductor varies as I = I0 cos r,  then a solution 
of the system of equations (1 .2 )may  b e sought in the form 

E = E1cos  x q- E2 s in  z, H = Hx cos T q- Hs s in  x. (1.5) 

Introducing the dimensionless coordinate x = (r/R0) z (1.6) and 
the dimensionless functions proportional to the squared amplitudes of 
the electric and magnet ic  fields 

~2 2 C 2 

and using expression (1.5) we can write the system of equations in 
the form 

d2zq~ c~ d c~ de; 
= 2 , ,  ao)Ro~ (T) dz moRo~ (T) z ~ = 2% 

a-7 T~---Tr--}  ~(T)(p = 0. (1.8) 
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The boundary conditions are 

~ ( o ) = o ,  r  d~_ x = o  dr x = o  ' d-~ < M = const, 

dT dT l a~Ro 
- -  ~=o l = - T IT d)  -- To]. dx = 0 ,  t ~  x=l (1.9) 

With the help of the first two equations of (1.8) the last equation 
of the system may be written as follows: 

T(x) 

F (T) =T!~))~(T)~(T)dT : (@7[I--,(z)], (I.IO) 

and system (1.8) together with the boundary conditions (1.9) may be 
rewritten in the form 

x 

0 

} ( x ) =  I _ _ 2 ) T : ( T )  @ lq~(l ) rtcoR,' - 7 -  ~ (r) d~, 
x 0 

T(x) 
/ nJo ~2 

F ( T ) =  f ~(T)~(T)dT=~]- ]  [ l - - ~ ( z ) ] ,  
T~(1) 

2 [T (l) - -  To] CqRoZ [T (t)] = (nJo) ~ d~x~ x=l" (1.11) 

Foz o[T(1)] = 0 system (i.ii) has a trivial solution, and the 
field is the same as the field in the absence of the plasma. This 
means that there does not exist an equilibrium discharge with a 
conductivity which is zero at the wai l  We shall therefore assume that 
there exists a boundary temperature T = T* such that o(T*) > 0 and 
o(T) = 0 for T < T*, T* > T(1). 

On this assumption the system of equations (1.11) assumes the 
form 

0 

x *  f~ 

0 

Tix) f. /nYo\2 F(T)= ~ ) ~ ( T ) d ( T ) d T = ~ )  [ t - - * ( ~ ) ] ,  
T* 

T* 

! E(T) d T = @  [ T ( t ) - - T o ] l n  f--~-, 
T 1) 

x *  

~ o ~  (,,:o l S ( ~,~o~o~ 
c ~ \ 2 } ,) -~--~(T)q~(z)dx=~x~Ro[T(l)--To]. (1.12) 

o 

2, Solution of the one dimensional problem. We shall look for a 
solution of the system of equations obtained above by the method of 
successive approximations, For the first approximation we shall set 

T (~ (~) = const, x *(~ = t 

and determine the subsequent approximations by the system of 
equations 

x 

o 

x *  ( n - l )  

~(~) (x) = t 2 f ~~176 d~ 

x 

~l(oRo 2 
X I q~(n) (r) T G  IT (n 1)] d% 

0 

T(n)(x) 
f inJo\2 F (T (n)) = ~, (r)  6 (T) dr = ~ T )  [t - r (x)l ' 

T *  

T *  

~, (T) dT = IT (n) (t) - -  To] In x.(n P 
T(n) (i) 

x*(n-t) 

o 

= alRo [T (n) (1) - -  Tel. (2.1) 

We shall show that the best first approximation, in the sense that 
it has the least upper uniform bound, is obtained for the functions 

T(n) by solving the equations (x) 

t 
F (T) = ( @ ) e  (t - -  Cber ]/-~p + (bei V-~),) , 

4go)RoSa (T) 
I~ = c~ (2.2) 

We shall take the preliminary step of proving that if Tr(x ) -> T2(x) for 
0 --< x --< 1, and ~h(x), r are solutions of the system of equations 

x 

0 

~ ( x ) =  t - - 2 3 ~ z ( T  ) q~('Q----~ff--z(T)d~ (2.4) 
x 0 

for T = Tz(x) and T = Tz(x), respectively, then ~bl(0) - ~2(0). We 
shall assume that under the conditions laid down ~01(x) > O2(x) for all 
x ~ [0, 1]. Then it follows from Eq. (2.3) that 

0 

but we then have from Eq. (2.4) for x = 0 

1 

c: / [ (T1)IqDI(~)z(T1)d'c-- 
o 0 

-- : (T2) S % ('~) ~ (T2) d'r} ~ < O 
0 

(z(T1)>G(Tz) for T I > T z ) .  (2.5) 

Since the functions ~0(x) are continuous it foliows that ~l(x)-< 
-< Cz (x) somewhere in the neighborhood of the point x = 0. Thus we 
arrive at a contradiction. This means that either ~l(x) < r for all 
x E [0,1), or else there exists at least one point x = Xn such that 
~bl(Xn) = ~bz(Xn) for 0 ~ x n < 1; then if x 1 is the first such point and 
~0t(x) > Oz (x) for 0 -< x < x t, then ~0~(x) > qz (x) and 

( ~O~Ro~ 1 ~ 
' 1 (0 )  - -  '3  (0) = - -  2 \ c2 ] {=(T1) qh(X) g ( T 1 ) d ~ - -  

0 0 

--~(T2)I%('Qa(T,)dx} d~ <0,  
0 

i.e., we again arrive at a contradiction. Consequently ~1(0) -< r 
We shall now assign the arbitrary value T. Some solution ~00(x ) of 

F (rl) < (1/2n]0)2. 

We now determine T by the equation F(T) = (nJ0/2) z, then 

Tl(0) < T, and consequently Tl(x ) < T. Using the proof given above 
for the functions Tt(x ) = T and T~(x) = TI(0 ) we obtain ~1(0) > ~z(0). 

If T2(0) is determined by the relation F[Tz(0)] = (nJ0/2)z(! -- ~h(0)), 
then T2(0) < Tt(0) < T. 
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If the process is continued, we obtain an infini te decreasing series 
of numbers Tn(0), bounded above by the value of T, and below by T*. 

Table 1 

k. o �9 1 0  -~ i *  
T ~ K erg/cm secg W, kW/cm R~ 

/ .So x~ o i r (~)(~)l  ( ~ r '  1 / ' ~ )  ~ 4= (boi' ~)' ~l[--y-) d z ~  

= =lRo [T (~) (1) - -  1"ol. (~ ,o)  

370 
470 
570 
700 
800 
900 

t000 
1100 
t200 

t .44 
t .52 
t .59 
t-68 
t .  73 
t .  78 
1.82 
t .86 
t .90 

0.12 
0.30 
0.52 
0.81 
t .05 
t .29 
1.54 
t .80 
2.06 

0.854 
0.941 
0.963 
0.977 
0.982 
0.98t 
0.988 
0.991 
0.992 

Consequently there exists a limit T (~ of this sequence. The solution 
of the system of equations (2,3) and (2.4) for T(x) =Tn<0 ) = const has 
the form 

4 (bei' l / -~z )  2 + (her' l /~nx) ~ 

(Pn = ~ (her  "~'-n )2 -1- (bei ] /~n) '  ' 

(her ~V~nx)2 @ (hei ] ~ n x )  ~ t (~n = &~oB'o'~(Tn) ~ 
$n = ( b e r  ]/~n> ~ + (gel ]/~n) ~ c~- j .  (2.6) 

If we go to the l imit  as n --~ ~ in the relation F(Tn+I) = 

= (nl0/2)z(1 - ~bn(0)), we obtain the required relation (2.2). In order 

to find subsequent approximations it is necessary to solve a system of 
integral equations composed of the first two equations of system (2.1). 
It may be reduced to the form 

= 1 + I (p(~) (v) K (x, v) dr ,  (p(n)(z) 

0 

o 

r (x) 
~(n) (X) --  (p(n)(x*(n-l)) ' 

i ~ If' \ ~ - -  n~ n d~ " 
K ( x , v ) = 2  / . ~ o [ T ( - 1 ) ] - ~ - }  d'~. ( 2 f / )  

Numerical calculations have shown that with an accuracy better 
than 15% the solution of the system o f  equations (2.'/) may  be replaced 
by the approximate expression 

(ber ]/~nx) 2 4- (bei ] ~ n x )  e 

~(n) (x) = (her V-~nx*(n-1))--2 -[- (bei ~ ' 

4 (bei' ] ~ n x )  2 + (her" ]~nX) ~ . (2.8) 

T (n) (x) = ~n (her V ~nx*(n-1)) 2 ~- (bei V ~nx'(n-1)) ~ 

The second approximation is 

T(e) (x) 

I. - t~ i_ .  ? k ( T ) ~ ( T ) d T ~ \  2 ] x 

x 
(ber ~ ) 2  + (bei ~ x ~  

T* 
I ~TRo ,-, t 

k (T) dT = --9~--" [ T~) (l) - -  To] In x .  (~)', 
T (2) (1) 

x.(t) 

(bei' ]/-~2x) 'z -Jr" (her' ]/~,~x) l , 

= ~Ro IT (~) (1) --/'01. (2.1o) 

This system of equations was solved numerically. 
3. Calculation of the  Dimtmrge Paramete:l and Comparimn 

with Experiment. Basic data for the calculations were taken from 
experimental  papers [2,4], namely an argon discharge at a presstae 
of 1 arm, induced in a closed flask (with no gas flow) of ~adius R 0 r. 
= 3.75 cm with quartz wails of thickness 5 - 0.2 cm.  The frequency 
of the generator was 12 Mc/sec.  The experimental papers referred to 
also investigated a xenon discharge, but calculations cannot be made 
for this at present because of the lack of complete and reliable data 
on the temperature dependence of the thermal conductivity eoeffr 
cient of xenon. 

The following integrals must be calculated in order to carry out 
the calculations: 

T* 

J l =  I LI(T) dT for T ~ I . 5 . 1 0 8 * K ,  (8.1) 
T 

T 

I ~q(T)z(T)dT for T > T %  (8.~) J2 = 
T* 

where the value T* = 4500*K was chosen as the boundary temperature. 

Table 2 

10 "s~ K n*J A . t u r n  W kW r* [ rt T ( 0 ) -  

8.0 13.3 
8.5 17.7 
9.0 22.6 

10.O 33.0 
10.5 39.2 

0.21 
0.36 
0.54 
1.06 
t .43 

0.9071 0.820 
0.948[ 0.870 
0.9641 0.908 
0.983 0.940 
0.987 0.945 

In practice it turns out that in order to obtain solutions which are 
just as accurate as the init ial  data concerning the thermal conduc- 
tivity and electrical conductivity, two approximations are enough. 

The first approximation to the solution has the form 

T(1)(x) 

t ~ ( r ) ~ ( r ) d r = ( ' ~ 4  / ~ \ 2 / x 

X (1 (ber_]/-~lx)'+ (bei ~]/'~-lx)~./ 
\ - -  (bet lf-~) 2 + (bei ]/-ff~)z 1 '  

T* 
t i X(r)dr= ~[ ra ) (1 ) - - ro lm .(,), 

T(1)(D 

Estimates indicate that for a small  degree of ionization the ther- 
ma l  conductivity associated with diffusion processes may be neglected 
in comparison with normal thermal conductivity. Thus in what 
follows, instead of the total thermal  conductivity coefficient kl(T), 
we shall use the coefficient of thermal conductivity ~(T) due to conduction. 
Data on its values for temperature up to 1500" K are contained in pa-  
pers [5, 6], and for temperatures from 2 " 10 s to 30 �9 10S~ are con- 
tained in paper [7]. 

The integrals I1 and J2 were calculated numerically using 
Simpson's rule with a step A T = 10O ~ for Jz and Z~ T = 500 ~ for J2. The 
electrical conductivity was calculated in accordance with paper [8J. 

For subsequent comparison of calculations with experiment the 
relation between the number of amp turns nJ 0, appearing in the initial 
equations, and the value of the power extracted from the discharge 
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by heat flow must he established. The power leaving the discharge 
per unit length is 

O~rT - r=R0 = 2zt/C0u, iT (I) -- T01- (a.3) W 

The required relation between the power and the ampere turns may 
be obtained from the thkd of Eqs, (2.10) taking (3.3) into account: 

x*( l )  

2~3~ ( .Yo/~ $ ~IT (~)(~)1 x 

N (hs ~/-~i~'(t'); - - (boi  V~X*ti))~ dx. (3.4) 

Using the second of gqs. (2,10) we may establish a relation 
betweeo ghe power leaving unit area of the wall and the bounding 

tO 

as r.~s i 
&O 9,0 /0,0 it, o 

Fig, 2 

coordinate ~r (o-r tile ~el~tive hoonding radius r*/R 0 = (x*) 1/2) with 
the temper.attlge of the inll{~r sl~tface of the flask T(1). The results 
of the app~opg_g~e. r assuming that there exists an adjusted 
heat  exchange, a-re given iu T~ble i .  The heat exchange is taken to be 
adjusted if ~he inequa l iq  e~/X0 >> 1 is fulfilled, where c~ is the co- 
efficient of heat trer~fet f?om the wall to the cooling medium, ~ is the 
mean value of ~he thermal ~olldnctivity coefficient of the wall material  
in the telllpe~a~u.te ~ange b e ~ e e n  the external and internal surfaces. 

The result8 given in T~ble ~. enable us to evaluate the limiting 
values of power removed f~om u a t  area of the wall under ideal 
cooling condit2ons, The r of the max imum allowable load 
will be taken to be the ~udaee temperature of the inner wall at which 
the_re is a flannel of lt$ softening. For quartz glass this is roughly 
1200~ fo-r which W ~ 90 W/cm ~. 

Th~ b~ic  re$ult8 obtallled from solving the systems of equatiom (2.9) 
and (2,10) for the ease in question are given in Table 2. The first 
column gives the values of max imum temperature in the discharge, 
the second gives tile number of amp turns per cm length of the induc- 
tor, the thl-rd gives the power of ~ e  heat flow leaving unit surface, 
while the fousth give8 the ~elative diameter of the electrically 
conducting ~egion with a ~onadh3g temperature of 4500~ 

0,s6 t . . . .  

ast 6 

. .  -~  

W 
I0 i# 

Fig, 3 

In order to compa-re theo-re~tcal and experimental  results for the 
boundary of the discharge We mUS~ establish precisely the conditions 
required fo-r ~uch a compa~isol! to be correct. Actually in carrying 
out tlle theoretical calculations it  was assumed that the discharge 
occupies a region Ilaving appreciable electrical conductivity. The 
isotherm corresponding to 4500~ was chosen as the conditional 
boundary of the discharge. In paper [2] the region of emission was 
studied by photographic methods, and not by using the electrical  

conductivity of the discharge, while its boundary was taken to be 
a c/role whose radius corresponded to an assumed drop in radiation 

.o r,g'K 

It20 / ,  t - 
r j  I 

8.0i W 
g 6 I0 

Fig. 4 

intensity to one tenth of the maximum value. Subsequently after sub- 
tracting the characteristic curve of the film used, it was established 
that drop in intensity to one tenth as determined from the darkening 
curve of the negative, corresponds to an actual drop of radiation 
intensity roughly equal to one half. Thus the discharge boundary in 
the experiment was established using the condition I = 0.6 I(0). 
In order to compare experimental  and calculated results for every 
possible value of the max imum temperature, the relative radius of 
the illuminated zone boundary q was calculated corresponding to 
the condition given above. Results of the calculations are to be found 
in the fifth column of Table 2. 

We must also allow for the fact that the one-dimensional  case 
treated by the theory was compared with an experiment performed 
under conditions when the ratio of the discharge diameter to the 
height of the inductor was of the o:de~ of unit D i .e. ,  when the 
processes of heat  removal and energy transfer from the generator to 
the plasma ate plainly of a two dimensional character, A correction 
for the two-dimensional nature of the real problem in the process 
of energy transfer from the generator to the plasma is made by 
introducing an effective number of inductor turns ff'~ intothesolution 
of the one dimensional problem. Its magnitude is determined so that 
H = 47rn*J0/c coincides with the magnet ic  field s~ength created by an 
inductor in the absence of a plasma at the point ~ = R0, z = 0, 

% 
56 ou 

06 

86 

Z6 

tO 

6 
a85 

E, V lcrn 

.: r 

tlSa a95  r l e  o 

Fig. 5 

The two dimensional nature of the heat removal  may be allowed 
for by introducing an effective length of the zone !** through which 
the heat  is removed. Considerable computational difficulties are 
involved in determining Z* theoretically, and in order to avoid them 
this quantity was estimated from experimental  data, Taking the 
results of papers [2,4] and eliminating the "discharge power" param- 
eter we obtain an expression for the radius of the luminous zone as a 
function of the max imum discharge temperature, The same function 
was calculated. The comparison of experimental  and calculated data 
given in Fig. 2 shows that they agree quite sathfactorily.  Here 1 was 
calculated for a boundary at T = 4600"K, while 2 was calculated 
for the boundary of the luminous zone, and experimental  data are 
denoted by points. It follows from this that at the same temperatures 
the experimental  and calculated values of the power are in agreement 
with each other. Assuming that for a given max imum temperature 
the calculated and experimental  values of the total energy introduced 
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into the plasma are equal, we may determine the effective dimension 
from which this energy is extracted, tn so doing we must subtract from 
the experimental value for the power the radiative losses estimated 
for argon under a pressure of 1 atm at l&-1701o of the total power [9]. 
In the case under consideration l* = 9.8 era. 

Using the value of l* thus obtained the relative plasma radius and 
maximum temperature were determined as functions of the discharge 
power W. Comparisons of calculated and experimental results are 
given in Fig. 3 and Fig. 4, respectively. Curves I in both figures 
were constructed without allowing for radiation, while curves 2 
allowed for it. Experimental data are shown by points. The calcula 
r.tons and experiment are in quite satisfactory quantitative agreement. 
Some qualitative discrepancy in the behavior of the experimental and 
calculated flmctions in Pig. 4 is connected in the regions of low power 
with an appreciable decrease in the radius of the discharge, which 
leads to l* becoming nonconstant. As the power increases, the fact 
that approximate equations were used instead of the original integral 
expressions begins to assert itself. As was pointed out above the 
approximation does not fail short of the exact solution by more 
than 15~ 

An estimate of the electric and magnetic field strengths and their 
radial distributions, as well as the current-density distribution in the 
discharge for the case when T(0) = 9.5.103~ are given in Fig. 5. 
Here the vertical dotted line is the boundary of the conducting zone. 
The depth of the skin layer was estimated from the current density 
curve, and was roughly 4 mm in the case in question. 

In order to make an approximate estimate of the electric field 
strength at the plasma boundary in the case when g >> 1, we obtain 
the following relatAon from the theory: 

nJo 
E (x*) -- /1o~ IT (0)1 V'~, (3.6) 

In the case when we actually measure the vaines nJ 0 and B >> 1, 
we may make a direct estimate of the maximum discharge tempera- 
ture. We give the values of the maximum discharge temperature 
calculated for some values of inductor amp turns: 

T(0)d0-3=8.2 ,  8.8, 9.3, 9.8, i0.2 t0.5 ~ K. 

If the height of the inductor is commensurable with the discharge 
diameter, then we must use the effective value for the number of 
inductor turns n*. 

The authors are grateful to I. P. Shirokova for assistance in pro- 
cessing the experimental results, and to L. S. Sergeeva for carrying 
out the numerical work. 
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